Lines of investigation
Our lab is interested in understanding the cellular and molecular mechanisms governing the expansion of the cerebral cortex observed across mammalian evolution. The cerebral cortex is the largest structure in the brain and is responsible, among others, for the higher cognitive functions that distinguish humans from other mammals. The extraordinary growth in the size of the cerebral cortex observed across the mammalian evolutionary scale is thought to underlie the concomitant growth in intellectual capacity. This evolutionary expansion of the cerebral cortex is recapitulated during development in higher mammals, when the embryonic cerebral cortex undergoes massive growth in surface area, and folds itself in stereotypic patterns.
In recent years multiple genetic mutations have been identified as the leading cause for mental retardation or impairment of intellectual capacity in humans. These mutations have been consistently linked to defects of cortical development during embryogenesis, and functional studies in rodents have shown that these genes play essential roles in distinct aspects of cortical neuron migration or of cortical folding.
We are interested in the identification and analysis of the basic mechanisms involved in the normal expansion and folding of the cerebral cortex in higher mammals. To study this we combine genetic tools (in vitro and in vivo electroporation, viral vectors, transgenic and knock-out mice), experimental embryology, state-of-the-art imaging techniques and standard histological, cellular and molecular biology methods, using various species as experimental models. Currently, our efforts are focused on understanding the role of Cajal-Retzius cells and intermediate progenitors in the tangential vs. radial expansion of the cerebral cortex, and in the formation of gyri at stereotypic locations in the cerebral cortex during development.
Web CortEvo-scFerret developing cerebral cortex
Del-Valle-Antón et al., Science Advances 2024
Representative Publications
- Multiple parallel cell lineages in the developing mammalian cerebral cortex. Del-Valle-Anton L, Amin S, Cimino D, Neuhaus F, Dvoretskova E, Fernández V, Babal YK, Garcia-Frigola C, Prieto-Colomina A, Murcia-Ramón R, Nomura Y, Cárdenas A, Feng C, Moreno-Bravo, J.A, Götz, M, Mayer C and Borrell V. Science Advances. 2024 10 (13), eadn9998 https://doi.org/10.1126/sciadv.adn9998
- Gene regulatory landscape of cerebral cortex folding Singh A, Del-Valle-Anton L, de Juan Romero C, Zhang Z, Fernández Ortuño E, Mahesh A, Espinós A, Soler R, Cárdenas A, Fernández V, Lusby R, Tiwari V K and Borrell V. Science Advances. 2024 10(23), eadn1640 https://doi.org/10.1126/sciadv.adn1640
- Epi-regulate my brain: unlocking mechanisms of brain growth evolution. Virginia Fernández and Víctor Borrell. EMBO J. 2024 43: 1385 - 1387 https://doi.org/10.1038/s44318-024-00083-8
- Keep calm and make neurons: The effects of glucocorticoids on human cortical neurogenesis. Virginia Fernández, Víctor Borrell Neuron. 2024 112(9): p1373-1375 https://doi.org/10.1016/j.neuron.2024.04.004
- Developmental mechanisms of gyrification. Fernández V, Borrell V. Curr Opin Neurobiol. 2023 80: 102711 https://10.1016/j.conb.2023.102711
- Structural basis of envelope and phase intrinsic coupling modes in the cerebral cortex. Messé A, Hollensteiner KJ, Delettre C, Dell L-A, Pieper F, Nentwig LJ, Galindo-Leon EE, Larrat B, Mériaux S, Mangin JF, Reillo I, de Juan Romero C, Borrell V, Engler G, Toro R, Engel AK, Hilgetag CC Neuroimage. 2023 276: 120212 https://doi.org/10.1016/j.neuroimage.2023.120212
- Theta/gamma Co-modulation Disruption After NMDAr Blockade by MK-801 Is Associated with Spatial Working Memory Deficits in Mice. Abad-Perez P, Molina-Payá F.J., Martínez-Otero L, Borrell V, Redondo RL, Brotons-Mas JR . Neuroscience. 2023 519: 162-176 https://doi.org/10.1016/j.neuroscience.2023.03.022
- Secondary loss of miR-3607 reduced cortical progenitor amplification during rodent evolution Chinnappa K, Cárdenas A, Prieto-Colomina A, Villalba A, Márquez-Galera Á, Soler R, Nomura Y, Llorens E, Tomasello U, López-Atalaya JP, Borrell V Sci Adv 2022 8(2):eabj4010 https://doi.org/10.1126/sciadv.abj4010
- Specific contribution of Reelin expressed by Cajal–Retzius cells or GABAergic interneurons to cortical lamination Alba Vílchez-Acosta, Yasmina Manso, Adrián Cárdenas, Alba Elias-Tersa, Magdalena Martínez-Losa, Marta Pascual, Manuel Álvarez-Dolado, Angus C. Nairn, Víctor Borrell, Eduardo Soriano PNAS 2022 119 (37): e2120079119 https://doi.org/10.1073/pnas.2120079119
- Repression of Irs2 by let-7 miRNAs is essential for homeostasis of the telencephalic neuroepithelium Fernández V, Martínez-Martínez MÁ, Prieto-Colomina A, Cárdenas A, Soler R, Dori M, Tomasello U, Nomura Y, López-Atalaya JP, Calegari F, Borrell V EMBO J 2020 39(21):e105479 https://doi.org/10.15252/embj.2020105479