Lines of investigation
Our research team runs several related projects studying the cellular and molecular mechanisms involved in the development of axonal connections in the brain. In particular, our aim is to uncover the principles underlying thalamocortical axonal wiring, maintenance and ultimately the rewiring of connections, through an integrated and innovative experimental programme.
The development of the thalamocortical wiring requires a precise topographical sorting of its connections. Each thalamic nucleus receives specific sensory information from the environment and projects topographically to its corresponding cortical.
A second level of organization is achieved within each area, where thalamocortical connections display an intra-areal topographical organization, allowing the generation of accurate spatial representations within each cortical area. Therefore, the level of organization and specificity of the thalamocortical projections is much more complex than other projection systems in the CNS. The central hypothesis of our laboratory is that thalamocortical wiring influences and maintains the functional architecture of the brain. We also believe that rewiring and plasticity events can be triggered by activity-dependent mechanisms in the thalamus.
Three major questions are been focused in the laboratory:
1- The transcriptional control of thalamocortical guidance and topography.
2- The activity-dependent mechanisms involved in thalamocortical guidance and wiring
3- The role of the thalamus and its connectivity in the neuroplastic cortical changes following sensory deprivation.
Within these projects we are using several experimental programmes, these include: optical imaging, manipulation of gene expression in vivo, cell and molecular biology, biochemistry, cell culture, sensory deprivation paradigms and electrophysiology (see Nat Neurosci 15, 1134-43 (2012); J Neurosci 32, 4372-85 (2012); Curr Biol 21, 1748-55 (2011); PLoS Biology 7, e98 (2009), J Neurosci 27, 3395-407 (2007), Cell 125, 127-42 (2006), Nat Rev Neurosci 4, 276-8 (2003). Furthermore, our team has successfully set up the technique of in utero electroporation to specifically target thalamic neurons in vivo.
We expect that the results derived from our investigations will contribute to our understating of how reprogramming of cortical wiring takes place following brain damage and how cortical structure is maintained.
Representative Publications
- Development has the answer: Unraveling psychiatric disorders via thalamocortical organoids. Eduardo Leyva-Díaz, Emily S. Wilson, Guillermina López-Bendito Cell Stem Cell. 2024 31(3): p283-284 https://doi.org/10.1016/j.stem.2024.02.008
- Nrg1 intracellular signaling regulates the development of interhemispheric callosal axons in mice. Ángela Rodríguez-Prieto, Isabel Mateos-White, Mar Aníbal-Martínez, Carmen Navarro-González, Cristina Gil-Sanz, Yaiza Domínguez-Canterla, Ana González-Manteiga, Verónica Del Buey Furió, Guillermina López-Bendito, Pietro Fazzari. Life Science Alliance. 2024 Volume 7, No. 9 https://doi.org/10.26508/lsa.202302250
- The superior colliculus: New insights into an evolutionarily ancient structure. Teresa Guillamón-Vivancos , Fabrizio Favaloro , Francesco Dori , Guillermina López-Bendito. Current Opinion in Neurobiology. 2024 89: December 2024, 102926 https://doi.org/10.1016/j.conb.2024.102926
- Input-dependent segregation of visual and somatosensory circuits in the mouse superior colliculus Teresa Guillamón-Vivancos, Mar Aníbal-Martínez, Lorenzo Puche-Aroca, Juan Antonio Moreno-Bravo, Miguel Valdeolmillos, Francisco J. Martini, Guillermina López-Bendito Science 2022 Aug 19; 377(6608):845-850 https://doi.org/10.1126/science.abq2960
- Astrocytes and neurons share region-specific transcriptional signatures that confer regional identity to neuronal reprogramming Herrero-Navarro Á, Puche-Aroca L, Moreno-Juan V, Sempere-Ferràndez A, Espinosa A, Susín R, Torres-Masjoan L, Leyva-Díaz E, Karow M, Figueres-Oñate M, López-Mascaraque L, López-Atalaya JP, Berninger B, López-Bendito G Sci Adv 2021 7(15):eabe8978 https://doi.org/10.1126/sciadv.abe8978
- Netrin 1-Mediated Role of the Substantia Nigra Pars Compacta and Ventral Tegmental Area in the Guidance of the Medial Habenular Axons Company V, Andreu-Cervera A, Madrigal MP, Andrés B, Almagro-García F, Chédotal A, López-Bendito G, Martinez S, Echevarría D, Moreno-Bravo JA, Puelles E Front Cell Dev Biol 2021 9:682067 https://doi.org/10.3389/fcell.2021.682067
- Spontaneous activity in developing thalamic and cortical sensory networks Martini FJ,Guillamón-Vivancos T, Moreno-Juan V, Valdeolmillos M, López-Bendito G. Neuron 2021 109(16):2519 https://doi.org/10.1016/j.neuron.2021.06.026
- Prenatal activity from thalamic neurons governs the emergence of functional cortical maps in mice. Antón-Bolaños N, Sempere-Ferrandez A, Guillamon-Vivancos T, Martini FJ, Perez-Saiz L, Gezelius H, Filipchuk A, Valdeolmillos M, Lopez-Bendito G Science 2019 364(6444):987 https://doi.org/10.1126/science.aav7617
- Prenatal thalamic waves regulate cortical area size prior to sensory processing Moreno-Juan V, Filipchuk A, Anton-Bolaños N, Mezzera C, Gezelius H, Andres B, Rodriguez-Malmierca L, Susin R, Schaad O, Iwasato T, Schüle R, Rutlin M, Nelson S, Ducret S, Valdeolmillos M, Rijli FM, Lopez-Bendito G Nat Commun 2017 8:14172 https://doi.org/10.1038/ncomms14172
- FLRT3 Is a Robo1-Interacting Protein that Determines Netrin-1 Attraction in Developing Axons Leyva-Diaz E, del Toro D, Menal MJ, Cambray S, Susin R, Tessier-Lavigne M, Klein R, Egea J, Lopez-Bendito G Curr Biol 2014 24(5):494 https://doi.org/10.1016/j.cub.2014.01.042