Neurotactin Functions in Concert with Other Identified CAMs in Growth Cone Guidance in Drosophila

Stephan Speicher,* Luis García-Alonso,* Ana Carmena, María D. Martín-Bermudo, Santiago de la Escalera, Fernando J. Iménez†
Centro de Biología Molecular “Severo Ochoa” (C.S.I.C.-U.A.M.)
Universidad Autónoma
28049 Madrid
Spain

Summary

We have isolated and characterized mutations in Drosophila neurotactin, a gene that encodes a cell adhesion protein widely expressed during neural development. Analysis of both loss and gain of gene function conditions during embryonic and postembryonic development revealed specific requirements for neurotactin during axon outgrowth, fasciculation, and guidance. Furthermore, embryos of some double mutant combinations of neurotactin and other genes encoding adhesion/signaling molecules, including neuroglian, derailed, and kekkon1, displayed phenotypic synergy. This result provides evidence for functional cooperativity in vivo between the adhesion and signaling pathways controlled by neurotactin and the other three genes.

Introduction

Cell adhesion proteins constitute a major functional class of molecules that are instrumental to the mechanisms controlling neurite outgrowth, growth cone guidance, and axon fasciculation (Goodman and Shatz, 1993; Keines and Cook, 1995; reviewed by Goodman, 1996). The functions of neural cell adhesion molecules (CAMs) in vertebrates have been inferred mainly from their patterns of expression and from in vitro assays (reviewed by Hynes and Lander, 1992; Rutishauser, 1993). These studies have revealed that neural CAMs frequently act as contact-mediated attractive, as well as repulsive, signals that operate by interaction with the cytoskeleton of the growth cone and via signal transduction mechanisms (e.g., see reviews by Doherty and Walsh, 1994; Tanaka and Sabry, 1995). Despite this, genetic analysis to evaluate the in vivo role of CAMs in neural development has led to unexpected results. Knockouts of different mouse genes encoding CAMs result in much milder phenotypes in guidance and connectivity than those expected from in vivo localization or in vitro analysis (Müller and Kypri, 1995; reviewed by Goodman, 1996; Hynes, 1996). Similarly, in Drosophila, loss-of-function mutations of different genes encoding CAMs (formally defined as membrane proteins capable of mediating aggregation of transfected S2 cells) cause little or no overt phenotypes, particularly in the CNS. Some CAM-encoding genes for which a mutational analysis has been reported in Drosophila are neuropilin (nrg; Bieber et al., 1989; Grenningloh et al., 1990; Hall and Bieber, 1997), Fasciclin II (Fasl; Grenningloh et al., 1991; Lin and Goodman, 1994), Fasciclin III (FasIII; Chiba et al., 1995), neuremusculin (nrn; Kania and Bellén, 1995), klingon (Butler et al., 1997), and irreC-rrst (Ramos et al., 1993), all of which encode CAMs of the immunoglobulin superfamily, and others like Fasciclin I (FasI; Elkins et al., 1990, connectin (Nose et al., 1994), and pollux (plx; Zhang et al., 1996). The lack of severe phenotypes in the absence of any single CAM has led to the proposal that during growth cone steering, either multiple recognition and signaling pathways have partially overlapping functions, or compensatory mechanisms result in the up-regulation of related genes, or both. As a consequence, inactivation of a single pathway does not lead to pronounced morphological abnormalities. In accordance with this proposal, the synergistic phenotype in the CNS of embryos lacking both Fas I and the Drosophila homolog of the cytoplasmic tyrosine kinase Abelson (Abl) suggested that the two proteins are part of different but functionally related pathways, either of which may suffice for axon guidance (Elkins et al., 1990). Likewise, the analysis of double mutants lacking two Drosophila receptor tyrosine phosphatases (RPTPs), DPTP69D and DPTP99A, indicated that these proteins have partially overlapping functions in motor neuron axon guidance (Desai et al., 1996). The molecular structures of these two RPTPs resemble that of some CAMs, suggesting that they, like some vertebrate CAMs, may also have adhesive properties (reviewed by Brady-Kalnay and Tonks, 1995; Fashena and Zinn, 1995). However, direct genetic evidence of functional overlap between neural CAMs, particularly in the CNS, is lacking.

Another important question is raised by the disparity in the patterns of expression of different CAMs. Some are expressed in highly restricted patterns, whereas the domain of expression of other CAMs is very broad. It might seem that the latter kind of pattern is not compatible with an instructive role in growth cone guidance.

Neurotactin (Nrt), a member of the serine esterase superfamily, is a type 2 cell surface glycoprotein with a single transmembrane domain (de la Escalera et al., 1990; Hortsch et al., 1990b). Like some other members of this group, e.g., Drosophila Glialactin and Glutactin and rat Neuroligins (Olson et al., 1990; Auld et al., 1995; Ichtchenko et al., 1995, 1996), the extracellular esterase-homologous domain of Nrt lacks the serine residue required for enzymatic activity. The accumulation of Nrt at sites of contact between cells in vivo and in vitro, and its capacity to promote cell adhesion in tissue culture, strongly suggest that Nrt functions as a CAM (Barthalay et al., 1990; de la Escalera et al., 1990; Hortsch et al., 1990b; Darboux et al., 1996). Nrt is widely expressed in the CNS during stages of cell proliferation and differentiation and in the PNS in a more restricted fashion, suggesting a role during neural development. To test this presumptive function, we isolated nr mutations and

*These authors contributed equally to this work.
†Present address: Wellcome/CRC Institute, Cambridge CB2 1QR, UK.
‡To whom correspondence should be addressed.
Figure 1. Expression of Nrt in the CNS of Wild-Type and Mutant Alleles

Different levels of Nrt accumulation are observed in wild-type (A), nrt1 (B), and nrtP668 (C) stage 14 embryos stained with mAb 43B5 under the same conditions. Extended periods of staining reveal in nrt1 (F) and nrtP668 (G) similar wide patterns of expression as in the wild type. No protein is detected in nrt5 null embryos (D). (E) is a sagittal view of three consecutive segments from a stage 12 wild-type embryo embedded in wax and stained with mAb 43B5 after sectioning; Nrt accumulation in commissural axons (arrow) is evident. (H) shows Nrt expression in the CNS of a stage 14 embryo of the genotype UAS-nrt+/1; GAL4E2277 nrt5/nrt5.

studied their effect upon axogenesis, both alone and in combination with mutations in other CAM and related genes. Lack of nrt produces mild but consistent defects in axogenesis in embryonic and postembryonic development. Ectopic expression of nrt causes axon misguidance phenotypes in the adult PNS. Furthermore, double mutant embryos for nrt and some CAM or CAM-like genes, mutations that lack obvious defects in axon pathfinding, display severe disruptions of the CNS axonal pattern.

Results

Wild-Type Expression of Neurotactin

A description of Nrt expression has been reported previously (de la Escalera et al., 1990; Hortsch et al., 1990b). We now extend the analysis to aspects of the expression pattern relevant to the present study. Nrt accumulates in the membranes of neuroblasts and their progeny (data not shown). Between stages 12 and 16 of axogenesis, extensive protein accumulation is observed in the CNS (Figure 1A). Analysis of serial sections revealed strong accumulation of Nrt in growing axon tracts and some heterogeneity in its distribution throughout the cell cortex (Figure 1E) but not in the motor axons exiting the CNS (data not shown). It was not possible to resolve Nrt in growth cones because of its widespread accumulation in cell bodies. After completion of neurogenesis, Nrt is down-regulated during the first larval instar (data not shown).

In the PNS of the embryo, Nrt was detected only in polyinnervated sensory organs (Barthalay et al., 1990; de la Escalera et al., 1990). In the developing PNS of the pupae, Nrt is expressed by ocellar pioneer neurons (Figure 3B) but not by neurons of neighbor bristles, which are monoinnervated sensory organs. Nrt is also expressed by differentiating eye photoreceptors (Barthalay et al., 1990; de la Escalera et al., 1990) and some sensory neurons in the wing (data not shown).

Isolation and Characterization of neurotactin Mutant Alleles

A mutant allele, nrt1, was isolated after immunoscreening the embryonic F2 generation of a diepoxibutane (DEB) mutagenesis with anti-Nrt monoclonal antibody (mAb) 43B5 (see Experimental Procedures). Using Southern blot analysis and PCR, nrt1 DNA was found to lack a fragment of 103 bp within the region encoding the extracellular, C-terminal domain of the protein (Figure 2A). Due to the frameshift introduced by the deletion, the 234 C-terminal amino acids are substituted by an unrelated amino acid sequence in the Nrt1 protein (Figure 2B). mAb 43B5, which recognizes a cytoplasmic N-terminal epitope (de la Escalera et al., 1990), stains nrt1 embryos only very faintly (Figures 1B and 1F), although the level of transcription of the gene is normal (data not shown). Also, mAb 43B5 does not detect the mutant protein in Western blots (data not shown) as it does with the normal protein (de la Escalera et al., 1990), suggesting that Nrt1 is very unstable or its antigenicity is strongly reduced. Homozygous nrt1 flies are viable and fertile.

A homozygous viable enhancer trap line, rP668, with a P element inserted in the 73C1-2 double band, where nrt maps, was subsequently shown to be an nrt mutant allele (nrtP668). In this allele, Nrt appears to be absent from the embryonic and pupal PNS (data not shown) and its accumulation in the CNS is reduced (Figures 1C and 1G). The P insertion site in nrtP668 was mapped by Southern blot analysis and PCR to the transcribed region of nrt, at 438 bp before the translation start site (Figure 2A; de la Escalera et al., 1990). Despite this, a probe specific to the 5' untranslated leader sequence common to the three nrt mRNAs (de la Escalera et al., 1990; Hortsch et al., 1990b) hybridized in situ to the CNS of nrtP668 embryos (data not shown), albeit producing a weaker signal than normal. This indicates that transcription in the mutant CNS still initiates at a position(s) 5' to the translation start site and that a normal protein
(see scheme in Figure 3F; for a full description of ocellar nerve development see García-Alonso et al., 1996). Mechanoreceptor neurons from Ocellar and Orbital bristles also start extending their axons before head eversion; however, they seem to follow epithelial cues toward their targets in the brain and remain associated with the epidermis once head eversion has taken place (Figure 3D). Recognition of these two different substrates (ECM versus epidermis) by the growth cones and the choice to attach or not to the epidermis is vital for both types of axons to project to their correct targets after head eversion (García-Alonso et al., 1996). In order to be displaced perpendicular to the epidermis and the brain after head eversion, ocellar pioneer axons must not adhere to the epidermis. Conversely, mechanoreceptor axons should be associated with the epidermis in order to continue following this surface after head eversion. Therefore, ocellar pioneer axons should recognize and be guided by a different subset of cues than mechanoreceptors.

Nrt is expressed by all ocellar pioneer neurons from the onset of axon extension, but it is not expressed by mechanosensory neurons (Figure 3B). Mutations in nrt frequently cause defasciculation of the normally tightly associated ocellar pioneer axons (Figure 3C; Table 1). Before head eversion in mutant pupae, this phenotype is predominant, but the penetrance decreases after head eversion (data not shown), possibly due to the new association of glial cells with the ocellar pioneer nerve and the subsequent enwrapping of the four fascicles by two sheets of glia (García-Alonso et al., 1996). The defasciculation phenotype must result from a specific requirement of adhesive sites of s-laminin (Hunter et al., 1989). The deletion in nrtrP668 blocks the action of an enhancer(s) that drives Nrt expression in the PNS. Therefore, ocellar pioneer axons should recognize and be guided by a different subset of cues than mechanoreceptors.

We analyzed Nrt requirements in the adult dorsal head, where different neighbor neurons select alternative substrates for axon projection (García-Alonso et al., 1996). During early pupal development, ocellar pioneer axons extend in the extracellular matrix (ECM) that cover the internal side of the prospective head without contacting the epithelium (Figure 3A). After head eversion, the ocellar pioneer nerve becomes displaced to its final position perpendicular to the epidermal surface and the brain can be made. Nevertheless, the insertion probably blocks the action of an enhancer(s) that drives Nrt expression in the PNS. Therefore, nrtrP668 is apparently a hypomorphic mutation in the CNS and a null mutation in the PNS.

Excision lines of the P-insertion in nrtrP668 were generated, and those carrying deletions of adjacent nrt sequences were detected by staining with mAb 43B5. Some were analyzed molecularly as well. One excision strain, nrtr, is a null mutation, most likely of a single gene, since it deletes the nrt transcribed region only (Figure 2A). Although nrt5 completely abolishes Nrt expression (Figure 1D), flies of this genotype are viable and fertile.

Neurotactin Mutations Cause Defasciculation of the Ocellar Pioneer Nerve

We analyzed Nrt requirements in the adult dorsal head, where different neighbor neurons select alternative substrates for axon projection (García-Alonso et al., 1996). During early pupal development, ocellar pioneer axons extend in the extracellular matrix (ECM) that cover the internal side of the prospective head without contacting the epithelium (Figure 3A). After head eversion, the ocellar pioneer nerve becomes displaced to its final position perpendicular to the epidermal surface and the brain can be made. Nevertheless, the insertion probably blocks the action of an enhancer(s) that drives Nrt expression in the PNS. Therefore, nrtrP668 is apparently a hypomorphic mutation in the CNS and a null mutation in the PNS.

Excision lines of the P-insertion in nrtrP668 were generated, and those carrying deletions of adjacent nrt sequences were detected by staining with mAb 43B5. Some were analyzed molecularly as well. One excision strain, nrtr, is a null mutation, most likely of a single gene, since it deletes the nrt transcribed region only (Figure 2A). Although nrt5 completely abolishes Nrt expression (Figure 1D), flies of this genotype are viable and fertile.
phenotype of the ocellar pioneer nerve in nrt5 was not corrected (Table 1). Nevertheless, in 21 of 42 pupal heads (50%) after head eversion, axons of mechanoreceptors (Ocellar and Postvertical) leave the epidermal surface and associate with the ocellar pioneer nerve (Figure 4E). These bristle axons start projection at their normal cell site but soon after initial extension turn toward the ocellar pioneers and contact them (see Figures 4D and 4E). To improve Nrt expression, we used the insertion GAL4G537.4 in the gene scabrous (Hinz et al., 1994). Before head eversion, pupae of the genotype GAL4G537.4/GAL4G1407 UAS\textendash nrt; nrt5 showed Nrt accumulation in most or all ocellar pioneer axons and in large patches of epithelial cells around the location of ocelli and mechanoreceptors (Figure 4A). Three classes of phenotypes were found in these pupae. After head eversion, 12 of 17 pupal heads (70%) were like those just described, with mechanoreceptor axons projecting away from the epidermis in association with the ocellar pioneers (Figure 4D). Also after head eversion, 9 of 17 pupal heads (53%) had ocellar pioneer axons projecting into the epidermis that either stalled or extended for some distance following the mechanoreceptor axons (Figures 4B and 4F). Finally, 12 of 77 pupal heads (16%) before eversion had an epidermal phenotype in which both sides of the head capsule came closer together due to a fold along the midline of the head (Figure 4C). This phenotype correlates with the epithelial expression of Nrt at both sides of the head midline. In this genetic combination, ocellar pioneer axons seem to fasciculate

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Penetrationa</th>
</tr>
</thead>
<tbody>
<tr>
<td>nrt1</td>
<td>10/12 (83%)</td>
</tr>
<tr>
<td>nrt5</td>
<td>7/10 (70%)</td>
</tr>
<tr>
<td>nrt1/nrt5</td>
<td>24/36 (66%)</td>
</tr>
<tr>
<td>nrt1/DF3L3stG537.2</td>
<td>5/6 (83%)</td>
</tr>
<tr>
<td>nrt5/6</td>
<td>6/12 (50%)</td>
</tr>
<tr>
<td>R20F</td>
<td>3/27 (11%)</td>
</tr>
<tr>
<td>GAL4G537.4/UAS\textendash nrt; UAS\textendash nrt; nrt5</td>
<td>37/52 (71%)</td>
</tr>
<tr>
<td>GAL4G537.4/GAL4G1407/UAS\textendash nrt; nrt5</td>
<td>20/77 (26%)</td>
</tr>
</tbody>
</table>

a Presence of any single split within the ocellar pioneer fascicles was considered to be defasciculation.

b This number represents a maximum, since defasciculation within the ECM could not be distinguished from splitting of the fascicle caused by the adhesion and extension of the ocellar pioneer axons along the epidermis before head eversion.

(A and C\textendash E), mAb 22C10; (B), mAb 43B5.
Neurotactin and Axon Guidance

Figure 4. Neurotactin Displays a Capacity as an Instructive Guidance Cue

(A) Expression of Nrt in GAL4G537.4/GAL4Mz1407 UAS±nrt; nrt5 pupal head capsule before head eversion. In addition to expression in ocellar pioneers (arrowhead), there is expression in large patches around ocellar pioneers and bristles.

(B) Some ocellar pioneer axons project in the epidermis in these pupae (arrowhead) and stall.

(C) Some other pupae of this genetic constitution display a fold along the head midline between both fascicles from left and right ocellar pioneers (arrowheads); the fold brings left and right sides closer together.

(D) GAL4G537.4/GAL4Mz1407 UAS±nrt; nrt5 pupae after head eversion show bristle axons (Ocellar or Postvertical) projecting to the ocellar pioneer nerve. In this case, one Ocellar bristle axon (arrow) is projecting with the ocellar pioneers, while the other is extending normally (note that the cell polarity of the neuron is normal but the axon turns toward the ocellar pioneer cell bodies soon after its birth).

(E) A similar phenotype is shown by pupae of the genotype GAL4Mz1407 UAS±nrt/UAS±nrt; nrt5. In this case, both Ocellar bristle axons (arrows) are projecting to the medial ocellus.

(F) GAL4G537.4/GAL4Mz1407 UAS±nrt; nrt5 pupae display ocellar pioneer axons (arrowheads) projecting in the epidermis after head eversion.

(G) In the wild type, axons from the triple row and the third vein sensilla converge projecting out of the wing toward the CNS.

(H) In GAL4G537.4/GAL4Mz1407 UAS±nrt; nrt5 pupae, axons from the triple row may not extend out of the wing, and third vein sensilla axons connect with them in a loop.

(I) The scheme shows the general aspect of head and thorax (wings have been omitted for simplification) at two pupal stages, before head eversion (BHE, as in [A] through [C]) and after head eversion (AHE, as in [D] through [H]). Left sides summarize wild-type patterns of axon projection of ocellar pioneer neurons, Orbital (only one is depicted for simplification), and Ocellar bristle neurons. Right sides summarize nrt gain-of-function phenotypes.

(A), mAb 43B5; (B±H), mAb 22C10.

much better than in the nrt5 mutant (Table 1); however, the fact that some ocellar pioneer axons attach to the epithelial surface makes the presence of some splitting in the nerve inevitable.

Neurons of the triple row in the anterior margin of the wing, but not sensillum neurons in the third vein, express Nrt in wild type (data not shown). No obvious phenotype in the axon-extension pattern of wing neurons is found in nrt5 pupae. However, GAL4G12407/UAS±nrt/UAS±nrt; nrt5 and even more GAL4G537.4/GAL4Mz1407 UAS±nrt; nrt5 pupae, which ectopically express Nrt in all wing neurons as well as in veins I and III, do show a mutant phenotype. Frequently, vein III sensilla have axons that turn back toward axons of the triple row, creating a loop that prevents both types of axons from leaving the wing in the direction of the CNS (compare Figures 4G and 4H).

In addition, analysis of the projection patterns of bristle axons of the pupal notum also reveals errors in their extension. For example, axons from Scutellar bristles can erroneously project to the contralateral side or even into the abdomen (data not shown). These results are consistent with the idea that Nrt has the capacity to provide axons with guidance cues.

The Embryonic CNS Phenotype of neurotactin Mutants

Despite its extensive expression in the embryo, Nrt is not essential for fly development. Accordingly, staining...
The Embryonic CNS of Double Mutants for neurotactin and Other Genes Encoding Neural CAMs: a Synergistic Interaction between neurotactin and neuroglian

The lack of widespread axonal defects in the CNS of nrt mutants suggests that the function of Nrt in CNS morphogenesis might be largely replaced by functionally related molecules. If so, embryos lacking both Nrt and one of these other molecules may display synergistic mutant phenotypes. To test this possibility, we analyzed embryos lacking function of both nrt and one of several genes encoding neural CAMs.

Nrg is a Drosophila neural CAM related to several vertebrate CAMs, though most closely to mouse L1 (Bieber et al., 1989). Two forms of Nrg that differ in their cytoplasmic domains and patterns of expression are known (Hortsch et al., 1990a). The long Nrg isoform is neural-specific; it is initially (early stage 12) found in a fraction of CNS neurons (Hortsch et al., 1990a), but during stage 13 it can be detected in most (and probably all) differentiating neurons (data not shown). The short Nrg isoform is expressed by glia, is widely expressed in other tissues, and is probably expressed throughout the entire CNS (Hortsch et al., 1990a). nrg1, a loss-of-function mutation for both Nrg forms, is lethal and causes motor neuron pathfinding defects, but the overall CNS structure of mutant embryos looks normal (Bieber et al., 1989; Hall and Bieber, 1997). Furthermore, unlike nrt6 embryos, no defects were detected with mAb 1D4 in nrg1 embryos (Table 2, line 5). In contrast, nrg1; nrt6 double mutant embryos have a severe CNS phenotype. With mAb BP102, we observed thinning or complete interruption of longitudinal connectives, as well as fusion of commissures (compare Figures 5C and 5D). Fas II fascicles exhibit similar abnormalities to those observed in nrt6 embryos, albeit with a much higher expressivity.
Table 2. The Phenotype of Fasciclin II-Expressing Axons at Stage 16 in nrt, nrg, nrt, and kek1; nrt Mutant Embryos

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Affected Hemisegments (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Stalling</td>
</tr>
<tr>
<td>nrt^{++}</td>
<td>1</td>
</tr>
<tr>
<td>nrt</td>
<td>4</td>
</tr>
<tr>
<td>nrt</td>
<td>6</td>
</tr>
<tr>
<td>nrt/nrt</td>
<td>5</td>
</tr>
<tr>
<td>nrg</td>
<td><1</td>
</tr>
<tr>
<td>nrg; nrt/nrt</td>
<td>9</td>
</tr>
<tr>
<td>nrg; nrt; nrt</td>
<td>26</td>
</tr>
<tr>
<td>nrg; R20F</td>
<td>1</td>
</tr>
<tr>
<td>nrg; nrt</td>
<td>79</td>
</tr>
<tr>
<td>nrg; nrt/nrt</td>
<td>84</td>
</tr>
<tr>
<td>nrg; nrt; nrt (DF3Lstd11)</td>
<td>94</td>
</tr>
<tr>
<td>nrg; nrt</td>
<td>38</td>
</tr>
<tr>
<td>nrg; nrt</td>
<td>38</td>
</tr>
<tr>
<td>nrg; nrt/nrt</td>
<td>33</td>
</tr>
<tr>
<td>kekl^v12</td>
<td><1</td>
</tr>
<tr>
<td>kekl^v12; nrt^5</td>
<td>28</td>
</tr>
</tbody>
</table>

*The mild defects found in embryos of genotypes 1-8, 15, and 16 were allowed to distinguish between stalling and misprojection phenotypes, even though both might be present in a same hemisegment. The severe defects of genotypes 9-14 were allowed only to record the total number of affected hemisegments. More than 100 hemisegments were examined in each case.

and penetrance. Most notably, interruptions of the longitudinal axon bundles were frequent, as were misguidance phenotypes (Figure 5; Table 2, line 9). Double mutant embryos, like single nrt embryos, also showed a local constriction of the ventral nerve cord with a variable expressivity. This defect may be a consequence of the impaired axogenesis and condensation of the nerve cord. No defects outside the CNS were evident in the double mutants.

Using mAb 22C10, which recognizes a subset of neurons (Fujita et al., 1982; Goodman et al., 1984), and mAb 104, we analyzed the behavior of several identified pioneer axons during early stages of axogenesis in nrg; nrt embryos (Figures 5K-5M). We observed that the pioneer axon of the intersegmental nerve, aCC, as well as the pioneer axon of the segmental nerve, establish their correct pathways. Likewise, the axons of the U neurons follow the aCC pathway correctly. In contrast, in 128 cases (29%), the axons of the dMP2 and MP1 neurons, pioneers of the MP1 pathway, do not normally defasciculate from the aCC axon to turn posteriorly, but either stall or delay their extension considerably (Figures 5K and 5L). Other axons showing misguidance phenotypes are those of the six ventral unpaired medial (VUM) neurons. In the wild type, the VUM axons initially fasciculate together before splitting into two fascicles that grow laterally at either side of the midline, passing the RP2 neuron and fasciculating with the corresponding anterior aCC axon (Figure 5M; Klämbt et al., 1991; Bössing and Technau, 1994). In 19 of 128 (15%) double mutant segments, the fascicle of VUM axons either does not split or splits into more than two fascicles, each joining a different aCC axon, including that of the same hemisegment (Figure 5M). The first two axons of the VMP2 pathway, pCC (the pioneer) and vMP2, grow correctly in most hemisegments; only in 4 of 128 cases did we observe a misrouted VMP2 axon. Anomalies in the trajectory of the SP1 axon were also observed, though rarely. nrg; nrt embryos also displayed, due to slight mispositioning of cells, a somewhat irregular appearance of what is normally a highly stereotyped pattern of neurons (Figures 5K-5M). However, relative positions of neurons were maintained.

It seems most likely that the phenotypes of nrg; nrt embryos result from a direct requirement for these two CAMs during axogenesis, and not as a secondary consequence of a previous requirement during neurogenesis. Thus, expression of the nuclear proteins Eve, Ftz, and En, markers of the specification of subsets of neurons that are arranged in characteristic patterns (Doe et al., 1988a, 1988b; Patel et al., 1989), was found to be normal in nrg; nrt embryos between stages 12 and 16 (data not shown). This suggests that a failure of proper cell fate determination does not cause the axonal mutant phenotype. Likewise, glial cells expressing Repo, a specific marker for most of the CNS glia (Hsiue et al., 1995), formed at the correct time and place and in normal number, in nrg; nrt embryos. The longitudinal glia (LG), which could provide a matrix for longitudinal axon extension (Jacobs and Goodman, 1989; Jacobs et al., 1989), migrated and arranged normally in the double mutant, prefusing the longitudinal connectives. It is from stage 14 onward, when the LG normally stretch in the anterior-posterior direction and enwrap the connectives, that gaps in the LG begin to appear, overlapping with gaps in the connectives (data not shown). It is most likely, therefore, that this LG phenotype in late mutant embryos is a consequence, rather than the origin, of the interruptions observed along the axonal connectives.

The interaction between nrg and nrt is gene-specific and is not attributable to the particular genetic background of any of the alleles employed. Thus, phenotypes similar to those of nrg; nrt embryos are also found in embryos carrying nrg and nrt over other strong alleles of independent origin such as nrt or Df(3L)std11 (Table 2, lines 10-11). Also, double mutants involving nrt embryos (Table 2, lines 6-7). Yet embryos of the genotype nrg; R20F serves as a wild-type control for the genetic background of nrt and nrt are essentially normal (Table 2, line 8). Also, the partial loss-of-function mutation nrg (Bienert et al., 1989; Hall and Bieber, 1997) combined with strong nrt alleles yielded similar phenotypes (Table 2, lines 12-14), but with a lower expressivity and penetrance than in the combinations involving nrg.

Finally, targeted neural expression of Nrt during axogenesis was driven in the nrg; nrt background with the GAL4 system (Brand and Perrimon, 1993), to attempt the rescue of the mutant phenotype (see Experimental Procedures). With the use of line GAL4 and a UAS-Nrt transgene, high levels of Nrt expression could be specifically restored in all CNS and a few PNS neurons of nrt embryos (Figure 1H). This GAL4-driven expression started at early stage 12 when postmitotic neurons begin to differentiate. Embryos of the genotype nrg; GAL4-UAS-Nrt/+; GAL4-UAS-Nrt/nrt were found to display a normal axonal pattern (Figure 5J). Therefore, we conclude that the absence of Nrt in central neurons during axogenesis...
Figure 6. The Embryonic CNS Phenotype of drfP3.765; nrt2; nrt3 embryos (A) Anti-β3-gal staining of a drfP3.765/+ embryo focused at the level of the Drl-expressing DV axon bundle (arrow).
(B) In the homozygous drfP3.765 embryo shown here, some defasciculation can be noticed in a DV bundle (arrow). Staining is stronger than in (A) due to the homogeneity of the β-galactosidase.
(C) Strong defects in the Drl axonal pattern are evident in a double drfP3.765; nrt3 embryo. (D) The axonal defects in drfP3.765; nrt3 mutants extend to many other axons, as revealed by the general axonal marker mAb BP102.
(E) Confocal image of a drfP3.765; nrt3 embryo at stage 16 double stained to show Drl (anti-β3-gal antibody; green) and Fas II (mAb 1D4; red) fascicles. Note defects of Fas II fascicles associated to defects of Drl fascicles (arrows). (F) In a stage 13 drfP3.765; nrt3 embryo, stained as in (E), growing DMP2 axons which express Fas II appear to contact Drl-expressing neurons (arrow).
(G–H) In the same UAS–nrt drfP3.765; GAL4[6227] nrt2/nrt3 embryo, normal projection patterns of both Drl (G) and Fas II (H) axons are rescued.
(I) Some defasciculation of Fas II axon bundles can be detected in a single kek1RM2 embryo (arrow), but the projection pattern is normal.

is the cause of the CNS mutant phenotype in nrg1; nrt3 embryos.

We analyzed combinations of nrt3 null mutations in five other CAM genes: Fasl, FasII, FasIII, plx, and nrm. All of these genes display more restricted CNS expression patterns than nrg or nrt. With the exception of nrm (Kania and Bellen, 1995), their loss-of-function condition produced no visible phenotype in the CNS when viewed under the light microscope. Using various antibody probes (see Experimental Procedures), we did not detect synergistic phenotypes in any of the double mutants.

Phenotypic Interactions of neurotactin with derailed and kekkon1

Several other membrane-bound molecules for which a CAM function has not yet been formally demonstrated have also been implicated in axon guidance. Following the same rationale as above, we analyzed embryos double mutant for nrt and each one of the following genes: drl, kekkon1 (kek1), Ptp69D, and Ptp99A.

The drl gene encodes a receptor tyrosine kinase required by a subset of interneurons to make correct axonal pathway choices (Callahan et al., 1995). The mutant allele drfP3.765 has an inserted P[etabu-lacZ] element which can be used to reveal Drl-expressing neurons and their axons (Callahan et al., 1995). Drl axons project contralaterally across the anterior commissure and then turn anteriorly forming two fascicles, termed DD and DV (Figure 6A). Within the CNS, homozygous drfP3.765 mutants displayed partial defasciculation of Drl axon bundles, but their projection patterns are essentially normal (Callahan et al., 1995; Figure 6B). In drfP3.765/++; nrt3 embryos, Drl fascicles look normal (data not shown). In contrast, all drfP3.765; nrt3 and drfP3.765/Df(2L)TW130; nrt3 embryos examined showed strong misguidance and stalling phenotypes of Drl axons in many segments (Figure 6C). Interestingly, mAbs BP102 (Figure 6D) and 1D4 (Figure 6E) in both double mutant combinations show that many axons that do not normally express Drl display similar defects to those exhibited by Drl axons. This reveals a nonautonomous requirement of Drl in those axons. Although at stage 16 Drl and Fas II axon bundles do not appear to contact each other (Figure 6E), we observed that at mid-stage 13, the extending axon of DMP2, a Fas II-expressing neuron, appears to contact Drl neurons (Figure 6F). The drl mutant alleles used here have an independent origin, strongly suggesting that it is the lack of Drl that contributes to the phenotype of the double mutants. On the other hand, GAL4-driven Nrt expression in differentiating CNS neurons of double drl nrt3 embryos (i.e., in embryos of the genotype UAS–nrt drfP3.765/ drfP3.765; GAL4[6227] nrt2/nrt3) was able to restore the normal projection patterns of both Drl and Fas II fascicles (Figures 6G and 6H). This result confirms that the double mutant phenotype is produced by the specific lack of Nrt in the CNS during axogenesis.

kek1 (Musacchio and Perrimon, 1996) is one of two closely related genes that encode transmembrane proteins with structural homology to CAMs and signaling molecules. The gene is expressed in many CNS neurons and midline cells during axogenesis. No major abnormalities were observed in the CNS of kek1 mutant embryos (Musacchio and Perrimon, 1996; Table 2, line 15);
although partial defasciculation of Fas II axon bundles can be sometimes detected in kek1^{MK} embryos (Figure 61). In kek1^{MK}, nrt^{5} as well as in kek1^{MK}/kek1^{MK}, nrt^{5} embryos stained with mAb BP102, extension of longitudinal axons through the interommissural region is frequently affected (data not shown). Also, a complex phenotype is detected with mAb 1D4: Fas II axons display defasciculation, stalling, and guidance defects in all double mutant embryos examined (Figure 61; Table 2, line 16). Most notably, Fas II axons frequently cross the midline, a phenomenon rarely observed in nrt^{5} embryos. These defects are indeed due to the absence of Nrt in differentiating neural cells, since the axon stalling and misguidance phenotypes could be rescued in embryos of the genotype UAS-nrt kek1^{MK}/kek1^{MK}; GAL4^{MK} nrt^{5}/nrt^{5} (Figure 6K).

Ptp69D and Ptp99A each encode a CAM-like receptor tyrosine phosphatase which, like Nrg, is selectively expressed in most or all CNS axons (Tian et al., 1991; Yang et al., 1991). Single gene mutations in Ptp69D or Ptp99A do not affect the overall morphology of the CNS, although perturbation of motor axon guidance once these axons leave the ventral nerve cord has been reported (Desai et al., 1996, 1997). In contrast to nrg mutants, the CNS phenotype of double mutant Ptp69D^{1} nrt^{5}/Df(3L)8ex25 nrt^{5} (which carry two nonoverlapping deletions of Ptp69D; Desai et al., 1997) and Ptp99A^{1} nrt^{5} embryos does not differ significantly from that of single gene nrt^{5} embryos (data not shown).

Discussion

The Function of Neurotactin in Axogenesis

Previous studies indicated that Nrt is able to mediate cell adhesion in cell culture (Barthalay et al., 1990; Hortsch et al., 1990b; Darboux et al., 1996). The mutational analysis presented here shows that the in vivo function of Nrt is consistent with the characteristics of a neural CAM involved in axogenesis.

The role of several other CAMs in neural development has already been tested by genetic means using lacking-of-function mutants or conditions of ectopic gene expression (i.e., gain-of-function situation), both in Drosophila and in vertebrates. Mild phenotypes are a rather common theme in loss-of-function conditions of neural CAM genes. Thus, in Drosophila embryos lacking nrg, the overall structure of the CNS develops normally (Bieber et al., 1989); in this case, only motor neuron pathfinding defects have been detected (Hall and Bieber, 1997). Altered presynaptic function and uncoordinated adult behavior (FasII; Zhong and Shanley, 1995) or selective defasciculation only observed at the EM level (FasII; Lin et al., 1994) are other examples of subtle mutant phenotypes. In the case of nrt, mutant phenotypes affecting axonal outgrowth, fasciculation, and guidance are also mild in most instances.

The most consistent axonal phenotype in nrt null individuals is defasciculation of the ocellar pioneer nerve. It is clear, however, that Nrt is not the only molecule implicated in ocellar pioneer nerve fascication: although the penetrance of ocellar pioneer axon defasciculation is high, expressivity is far from complete and many axons remain fasciculated. In contrast, a similar defasciculation phenotype is not evident in the CNS of nrt null embryos, perhaps because it is difficult to reveal, as it was in the case of FasII null mutants (Lin et al., 1994). The apparent lack of defasciculation phenotypes in the CNS might result from redundant adhesion pathways, which may exist in larger number in the CNS than in the ocellar pioneer nerve. It is not unreasonable to speculate that additional constraints might be imposed by the high axonal and cell body density in contrast to the unrestricted navigation of ocellar pioneer axons in the ECM. In nrt null mutants, some ocellar pioneer axons can project in the epidermis, but there they eventually stall. This phenotype suggests either that the epidermis inhibits ocellar axon extension (through an active signaling process or a purely mechanical constraint) or that the molecules involved in the interaction of ocellar pioneer growth cones with the epidermal cell surface are not able to produce the signals necessary to maintain ocellar axon extension. Nevertheless, ectopic expression of Nrt in the epidermal cell surface can produce exactly the same phenotype, indicating that ocellar pioneer growth cones recognize and interact with Nrt in the epidermal cells. This last result strongly suggests that the epidermis inhibits ocellar pioneer axon extension. The molecules involved in this inhibition, however, must not operate over mechanoreceptor growth cones.

The stalling phenotype of CNS axons in nrt null embryos could reflect a role of Nrt in promoting axon outgrowth, or it could be a consequence of an altered selection of substrate as in the case of ocellar pioneers. The misrouting phenotypes also suggest that Nrt may function, directly or indirectly, as a guidance cue. A likely requisite for a molecule to carry out a guidance function is that it ought to be unequally distributed within the CNS phenotype of double mutant Nrt in the epidermal cell surface can produce exactly the same phenotype, indicating that ocellar pioneer growth cones recognize and interact with Nrt in the epidermal cells. This last result strongly suggests that the epidermis inhibits ocellar pioneer axon extension. The molecules involved in this inhibition, however, must not operate over mechanoreceptor growth cones.

The stalling phenotype of CNS axons in nrt null embryos could reflect a role of Nrt in promoting axon outgrowth, or it could be a consequence of an altered selection of substrate as in the case of ocellar pioneers. The misrouting phenotypes also suggest that Nrt may function, directly or indirectly, as a guidance cue. A likely requisite for a molecule to carry out a guidance function is that it ought to be unequally distributed within the CNS phenotype of double mutant Nrt in the epidermal cell surface can produce exactly the same phenotype, indicating that ocellar pioneer growth cones recognize and interact with Nrt in the epidermal cells. This last result strongly suggests that the epidermis inhibits ocellar pioneer axon extension. The molecules involved in this inhibition, however, must not operate over mechanoreceptor growth cones.

The stalling phenotype of CNS axons in nrt null embryos could reflect a role of Nrt in promoting axon outgrowth, or it could be a consequence of an altered selection of substrate as in the case of ocellar pioneers. The misrouting phenotypes also suggest that Nrt may function, directly or indirectly, as a guidance cue. A likely requisite for a molecule to carry out a guidance function is that it ought to be unequally distributed within the CNS phenotype of double mutant Nrt in the epidermal cell surface can produce exactly the same phenotype, indicating that ocellar pioneer growth cones recognize and interact with Nrt in the epidermal cells. This last result strongly suggests that the epidermis inhibits ocellar pioneer axon extension. The molecules involved in this inhibition, however, must not operate over mechanoreceptor growth cones.

The stalling phenotype of CNS axons in nrt null embryos could reflect a role of Nrt in promoting axon outgrowth, or it could be a consequence of an altered selection of substrate as in the case of ocellar pioneers. The misrouting phenotypes also suggest that Nrt may function, directly or indirectly, as a guidance cue. A likely requisite for a molecule to carry out a guidance function is that it ought to be unequally distributed within the CNS phenotype of double mutant Nrt in the epidermal cell surface can produce exactly the same phenotype, indicating that ocellar pioneer growth cones recognize and interact with Nrt in the epidermal cells. This last result strongly suggests that the epidermis inhibits ocellar pioneer axon extension. The molecules involved in this inhibition, however, must not operate over mechanoreceptor growth cones.
the PNS expression of Nrt is prominent in polyinnervated sensory organs including ocelli and eye ommatidia neurons, the axons of which grow together toward the CNS.

It has been suggested recently that Nrt can mediate homotypic cell adhesion through a secreted molecule acting as an intermediate ligand (Darboux et al., 1996). The phenotypes reported here for loss-of-function conditions and ectopic Nrt expression are compatible with that proposal.

Functional Cooperativity between Neural CAMs in Axon Outgrowth and Guidance

A variety of recognition and signaling mechanisms are thought to operate in a concerted fashion in the process of axon steering (Goodman, 1996). Cell adhesion and other related molecules probably mediate a substantial fraction of those mechanisms. The usual absence of severe phenotypes in loss-of-function mutants for any single relevant putative gene has been explained by the functional cooperation and partial overlapping of different guidance mechanisms (Goodman, 1996; Hynes, 1996). If so, appropriate double mutant combinations might be expected to result in synergistic phenotypes. This has indeed been the case in the few instances in which that hypothesis has been tested. Thus, double mutants for two Drosophila receptor tyrosine phosphatase genes, Ptp69D and Ptp99A, show a synergistic phenotype in motor neuron axon guidance (Desai et al., 1996). Also, a synergistic CNS phenotype was found in double mutants for the CAM gene Fasl and the cytoplasmic tyrosine kinase abl gene, the latter thought to mediate intracellular signal transduction of adhesion or signaling receptor(s) (Elkins et al., 1990). In this paper, we have shown that synergistic CNS phenotypes are produced in double mutant embryos for Nrt and Nrg as well as drl and kek1. Since in several other double mutant combinations the phenotypes are simply additive, it is plausible to conclude that the former phenotypes are not simply due to a general, nonspecific, deleterious effect produced by the lack of Nrt. Likewise, the synergistic phenotypes strengthen the evidence for a role of Nrt during axogenesis within the CNS and also reveal the participation of the other three genes in the same process, a function not uncovered previously by the analysis of single mutant embryos (Bieber et al., 1989; Callahan et al., 1995; Musacchio and Perrimon, 1996; Hall and Bieber, 1997). Furthermore, the phenotypic synergy reported here is, to our knowledge, the first direct in vivo demonstration by genetic means of the existence of functional cooperation in the CNS between one CAM, Nrt, and other CAMs and receptor-like signaling molecules.

Although Nrg and Nrt are likely expressed in all CNS neurons during the critical stages of axogenesis, nrg; nrt embryos display specific misguidance phenotypes (Figure 5). With the proviso that eventual heterogeneties in the expression of Nrg (and Nrt) might provide CNS axons with some guidance cues, we suggest that, in line with the hypothesis presented above to account for the guidance defects of nrt; single mutants, the concomitant lack of Nrt and Nrg can strongly weaken axon-to-axon interactions within any given fascicle, causing frequent loss of contact with their neighbors. Consequently, single axons might become prone to stall or leave their normal pathways of growth and, eventually, to join another pathway with the same “label.” In addition, the analysis of a subset of identified neurons in nrg; nrt embryos with mAb 22C10 has shown that certain axon projections do not seem to be affected, whereas others frequently display misguidance phenotypes. This suggests a degree of specificity in the requirements of particular axons for Nrg (and Nrt). Although Ptp69D and Ptp99A are, like Nrg, widely expressed in the CNS, we have not detected phenotypic synergy in their double mutant combinations with nrt. It is thus possible that differences exist in the relative requirements of different axonal pathways for the several molecules that operate during growth and guidance in the CNS but apparently have uniform distribution.

The putative transmembrane proteins encoded by the genes kek1 and kek2 show striking conservation of their extracellular domains to other known adhesion and signaling molecules and are coexpressed in many neurons (Musacchio and Perrimon, 1996). This had led some to propose that a redundant function of both proteins might explain the lack of an overt CNS phenotype in kek1 null mutants (Musacchio and Perrimon, 1996). Nevertheless, since absolute gene redundancy is probably the exception in nature, it is more likely a situation of partial redundancy. Accordingly, the local axonal defasciculation in kek1 embryos and the synergistic phenotypes in kek1; nrt embryos indicate that kek2 cannot totally substitute for kek1. Therefore, kek1 function must be regarded as unique.

Among the several double mutant combinations between nrt and other genes of highly restricted CNS expression that we have studied, only the drl; nrt combination has resulted in a clear synergistic phenotype (Figures 6C–6E). The double mutant analysis has confirmed that Drl participates in the fasciculation and guidance of Drl-expressing axons, as already inferred from the phenotype of drl single mutants (Callahan et al., 1995). Interestingly, guidance of other axons that do not express Drl, like those expressing Fas II, is also affected in drl; nrt embryos (Figure 6E). Two possible interpretations could account for the phenotype of drl; nrt embryos. (1) Drl signaling through recognition of its (unknown) ligand gives the Drl neurons guidance instructions that are partially redundant with another pathway involving Nrt. Thus, in drl single mutants, mild phenotypes are observed, whereas in the double mutant guidance of Drl axons is highly abnormal. The nonautonomous misguidance of other axons in the CNS (such as the Fas II pathways) could then be interpreted as simply being due to the loss of a cellular guidance cue provided by Drl neurons. (2) This nonautonomous phenotype could alternatively reveal that Drl signaling is bidirectional, like that of membrane tyrosine kinases of the Eph family (Henkemeyer et al., 1996; Holland et al., 1996), and Drl activates its (unknown) receptor expressed on other neurons (such as the Fas II neurons). This signal would be redundant with an Nrt signal (this could come from neurons that do not express Drl, since all CNS neurons express Nrt). Thus, in the double mutant, these adjacent (Fas II”) axons would display abnormal guidance. Future experiments, like the specific ablation of
Drl neurons, may allow us to distinguish between both interpretations. Phenotypic nonautonomy during CNS morphogenesis can also be inferred in other instances, as for FasII from the analysis of Ab⋯ ’Fas⋯ double mutant embryos reported by Elkins et al. (1990).

In summary, the analysis of nrt mutations, alone or in combination with mutations in the third other genes with functions presumed to be related, has demonstrated their requirement for axon outgrowth, fasciculation, and guidance. It follows that a complex and diverse functional cooperation among their gene products exists in the CNS. Future work should show whether mutations in other genes of widespread neural expression like nrt(e.g., nrg) behave similarly in double mutant combinations. This will help to understand better the complexity of interactions occurring during growth cone steering between the different functional pathways mediated by adhesion/signaling molecules.

Experimental Procedures

Genetic Methods and Mutagenesis

Males of the genotype mwh jv st e were mutagenized with 6 mM diethylthiourea, according to the method of Lewis and Bacher (1968). Mutagenized chromosomes were recovered over TM3 balancer chromosomes in females. Groups of 50 such females were mated to Df(3L)K117/TM6B males and their embryonic progeny stained with anti-Nrt mab 43B5. Whenever embryos with low or no staining were observed, the group of 50 females was divided into five groups of 10 and the analysis repeated. If unstained embryos newly appeared in one group, stable lines were derived from each of the 10 females and the presence of a presumptive mutation in nrt was tested by staining embryos of each line. Out of 2500 mutagenized chromosomes analyzed in this way, one mutant allele, nrt1, was isolated. The nrt1 chromosome, initially lethal, became viable after outcrossing it to a wild-type background.

The enhancer trap line P668 was a gift from the laboratory of G. Rubin. It contains a P⋯IAβ element (Wilson et al., 1989) inserted at cytological position 73C1–2. To obtain excision revertants of the P element in P668, the transposon was mobilized by crossing to flies carrying a stable source of transposase activity (Robertson et al., 1988). Excision lines were established that had lost the rosy⋯ marker gene and examined for Nrt expression during embryogenesis using mAb 43B5. Several of those lines that showed no 43B5 antigen were analyzed molecularly and one of them, nrt5, was used for subsequent studies. One excision line, R20F, where the wild-type pattern of Nrt expression had been restored, was used as a control. Alleles of other genes used for double mutant analysis were nrg1 and nrg2 (Hall and Bieber, 1997), FasII and FasII12 (Ekins et al., 1990), FasII1212 (Grenningloh et al., 1991); nrt1 and Df(3L)l°A7K (Kania and Bellen, 1995), pxkr167 (Zhang et al., 1996), kex1210 and kex1245 (Musacchio and Perrimon, 1996), df(3)F10 (Callahan et al., 1995), Ptp66D0 and Df(3L)ex25 (Desai et al., 1996), and Ptp99A1 (Hamilton et al., 1995). Other mutant strains are described in Lindsley and Zimm (1992).

The strains GAL44187 and GAL4198127 (a gift from J. Urban), and GAL4198127 (an insertion in scabrous; a gift from U. Hinz) were used to induce ectopic expression of Nrt. Transformant lines carrying a UAS⋯nrt insertion were produced using nrt cDNA B41 (de la Escalera et al., 1990) as indicated in Brand and Perrimon (1993).

Parental individuals for the analysis of double mutant progeny were obtained by the appropriate crosses or by recombination using, whenever necessary, balancer chromosomes carrying a lacZ insertion. For the analysis of FasII excisions, the parents also carried a marker second chromosome with an ftz⋯tau-β-gal construct (Callahan and Thomas, 1994). This construct expresses β-gal in some axons that also express Fas II (Lin et al., 1994).

Genomic Cloning and Molecular Mapping

DNA clones were isolated from a genomic library (Maniatis et al., 1978) using an nrt cDNA as a probe. After restriction mapping, the cloned region was shown to encompass about 30 kb of DNA. Using nrt cDNA B41 and Southern blot analysis, the approximate location of the transcription start sites and the existence of a large intron could be detected. The transcription start sites was more precisely determined by primer extension and by S1 mapping using poly(A)⋯RNA from 0- to 2-day-old pupae. At this stage, the two major nrt mRNAs are present in similar amounts. A single transcription start site was found, and the DNA region upstream to it was partially sequenced. The existence of consensus donor and acceptor splicing sequences (Keller and Noon, 1985) at the exon⋯intron boundaries of the large intron was determined by DNA sequencing.

To determine the nature of the nrt mutation at the molecular level, DNA from homozygous nrt flies was digested with appropriate restriction enzymes to obtain small fragments and, after Southern blotting, hybridized to cDNA B41. A small DNA deletion could thus be detected within the nrt coding region. The region containing the deletion was amplified by PCR and sequenced to determine the exact size of the deletion. As a control, parental mwh jv st e flies were used.

The approximate insertion site of the P transposon in the enhancer trap line P668 was determined by analyzing the restriction map of the nrt genomic region in homozygous P668 flies by Southern blot hybridization using genomic clones as probes. To determine the site of insertion precisely, P668 DNA was amplified by PCR using primers corresponding to the end of the transposon and to the surrounding nrt region. The amplified DNA was then sequenced. Southern blot analysis was used for restriction mapping to determine the approximate position of the breakpoints of the DNA deletion associated with the nrt0 allele, which was obtained by imprecise excision of the transposon.

Immunohistochemistry

Embryos raised at 25°C (29°C for the GAL4 rescue experiment) were fixed and stained as previously described (Carmena et al., 1995). Following HRP immunostaining, embryos were cleared and dissected in 50% glycerol and mounted in 100% glycerol for observation. Confocal images were obtained as in Carmena et al. (1995). Alternatively, fixed embryos were embedded in paraffin wax (Romani et al., 1987); sections (8 μm) were obtained, treated with xylene, and rehydrated. After incubation with anti-Nrt mab 43B5 for 30 min, the sections were further treated in the same way as embryo whole mounts.

Double mutant embryos were identified by staining with mAb 43B5 alone (double mutant recombinants for nrt and FasII, Ptp66D0, Ptp99A1, or nrt), or together with mAbs (a gift from C. Goodman) against the appropriate proteins (double mutants for nrt and nrg, FasII, or FasIII), or with anti-β-gal antibodies (a gift from M. Bellen) and examined for Nrt expression during embryogenesis using mAb 43B5. Most of these double mutants were also stained with antibodies against β-galactosidase, visualizing the presence of that protein in marked balancer chromosomes in all other cases, in df(3)F10, and in the chromosome bearing the ftz⋯tau-β-gal construct.

Pupae were processed as previously described (Garcia-Alonso et al., 1996) and stained with mAbs 22C10 or 43B5 followed by the appropriate biotinylated secondary antibody and the Elite kit (Vector).

Acknowledgments

We thank an anonymous reviewer for valuable suggestions to improve the Discussion; T. Komberg for comments on the manuscript; K. Zinn for detailed information on Ptp66D0 alleles; and H. Bellen, J. Campos-Ortega, C. Goodman, W. Hinz, W. Odenwald, N. Perrimon, G. Rubin, J. Thomas, J. Urban, and K. Zinn for flies and antibodies. S. S. was supported by a contract from the Human Capital and Mobility Programme of the European Union. A. C., M. D.-M., and S. E. held fellowships from the Spanish Ministerio de Educacion y Ciencia (C.A.R. and C.M.S.O.) and the European Union (BIO4-CT96-0450) to F. J., and an institutional grant from Fundación Ramón Areces to the C.B.M.S.O.

Received July 16, 1997; revised December 11, 1997.
References

