














transcriptional gene profile of sensory-modality TC neurons
during prenatal development and suggests that a correct
axonal connectivity is necessary to establish and/or maintain
this gene imprinting.

Discussion
Identification of TFs uniquely expressed by distinct sensory
modality-related thalamic neurons is crucial for understanding
the intrinsic mechanisms controlling programs of TC

Figure 3. Genes expressed in principal thalamic nuclei at late embryonic stage. (A) Scheme of coronal sections at E18 as in Fig. 2. (B) Scatter plots of genes differen-

tially expressed between thalamic nuclei. Yellow cells were compared with red and green combined (left) and red and yellow combined cells were compared with

green (right). Only genes with FC > 1.5 (P < 0.05) are plotted. Stippled lines indicate FC 1.5. (C–D) Expression levels from the microarray data (left) and in situ hybridiza-

tion confirmation of expression of selected genes from each group. Intermediate (middle) and caudal thalamus (right). (C) Two of the genes enriched in the yellow

population, Crabp2 and Ascl1, showed expression restricted to MGN. Genes with enriched, but not exclusive, expression were Pknox2 and Tshz1. (D) In situ hybridiza-

tion for selected genes, Ebf1, Pou2f2, Lef1, Igfbp4, Vgf, and Vegfc enriched in red and yellow principal populations (dLGN, VB, and MGN). Scale bar represents 100 μm.
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Figure 4. Identification of genes expressed in principal thalamic neurons at embryonic development. (A) Delivery of Tam at E9.5 label principal sensory thalamic neu-

rons in red. At the time of analysis, E14.5, the green fluorescence is still present in most of those cells at this stage and additional nonprincipal thalamic neurons

have started to express Gbx2 and thus are green. (B–C) Fluorescent labels of the thalamic cells in Gbx2CreER;R26tdTomato;Tam E9.5 mutant embryos at E14.5 at intermediate

(B) and caudal (C) thalamic levels. Putative dLGN, VB, and MGN are labeled in red. Green is exclusive in medial nonprincipal thalamic nuclei. (D) Illustration of FACS

procedure. Example of FACS of E14.5 double-mutant embryos (right). Green versus red fluorescence intensity was used to separate the cells. The colored boxes indi-

cate cells selected from each group. Note that almost no red-only cells could be isolated at this stage. (E) Genes differentially expressed between sorted red and green

thalamic cells. Only genes with FC > 1.5 (P < 0.05) are plotted. Stippled lines indicate FC 1.5. (F) Schema representing the scenario: cells expressing red at E14.5 will

later give rise to either red or yellow cells at E18.5, while cells with only GFP expression at E14.5 could be different from the green population at E18.5. (G) Venn dia-

gram showing overlaps between the lists of genes enriched in principal (red) population at E14.5 and the different principal populations (red and/or yellow) at E18.5

(left). The numbers in parenthesis indicate the number of genes in each category. There were 20 genes in common between the red populations at E14.5 and E18.5

and 4 genes in common between E14.5 red and E18.5 yellow. When including the genes enriched in red and yellow populations, 8 additional transcripts were found

enriched also in the red population at E14.5. (H) In situ hybridization for 2 of the developmentally enriched genes at E14.5 and E18.5, Hs6st2 at intermediate (left) and

Crabp2 at caudal levels (right).
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connectivity. Here, we have developed a genetic dual fluorescent
labeling strategy to identify genes with selective expression in
developing thalamic neurons. First, the strategy was validated as

Gbx2 and Lhx2, which are well-known genes expressed in audi-
tory MGN and medial nonprincipal thalamic populations
(Nakagawa and O’Leary 2001; Suzuki-Hirano et al. 2011;
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Figure 5. TF binding motifs and gene interaction networks in the distinct principal thalamic populations. (A) Bar plot showing predicted TFs at promoters of the genes

specifically expressed in dLGN/VB (red) population at E18.5. The x-axis shows the number of genes that were found to have a motif for the respective factor on the y-

axis. Only those factors that were found to be significant (P < 0.05) are plotted. TFs expressed in this population according to the microarray analysis are highlighted

in blue. (B) Gene network using the expressed significant TFs and their potential targets for dLGN/VB (red) population at E18.5. (C) TF predicted by motifs analysis of

genes enriched in the red population (top row) and the downstream genes having each motif. Only TFs that are expressed within the population and their targets are

shown. (D) Bar plot showing predicted TFs at promoters of the genes specifically expressed in MGN (yellow) population at E18.5. (E) Gene network using the expressed

significant TFs and their potential targets for MGN (yellow) population at E18.5. (F) TF predicted by motifs analysis of genes enriched in the yellow population (top

row) and the downstream genes having each motif. Only TFs that are expressed within the population and their targets are shown.
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Figure 6. TF binding motifs and gene interaction networks in principal thalamic neuronal populations. (A) Bar plot showing predicted TFs at promoters of the genes

specifically expressed in principal dLGN/VB/MGN (red and yellow) populations at E18.5. The x-axis shows the number of genes that were found to have a motif for the

respective factor on y-axis. Only those factors that were found to be significant (P < 0.05) are plotted. TFs expressed in this population according to the microarray

analysis are highlighted in blue. (B) A gene network created by using the significant TFs and their potential targets for this population. (C) TF predicted by motifs ana-

lysis of genes enriched in the population (top row) and the downstream genes having each motif. Only TFs that are expressed within the population and their targets

are shown. (D) Bar plot showing predicted TFs at promoters of the genes specifically expressed in principal thalamic nuclei at both E14.5 and E18.5. (E) Gene network

using the expressed significant TFs and their potential targets for principal thalamic nuclei at both E14.5 and E18.5. (F) TF predicted by motifs analysis of genes

enriched in the population (top row) and the downstream genes having each motif. Only TFs that are expressed in to principal (yellow and red) populations at both

E14.5 and E18.5 and their targets are shown.
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Marcos-Mondéjar et al. 2012), were enriched in these neurons in
our transgenic mice. Moreover, genes with expression restricted
to each principal sensory nucleus or developmentally restricted
to principal sensory thalamic nuclei were revealed suggesting
that these genes might play important roles in specifying thal-
amic neurons to connect with primary cortical areas.

Previous efforts have provided a number of genes that could
be important for TC development or TC nuclei specification
(Horng et al. 2009; Suzuki-Hirano et al. 2011; Yuge et al. 2011;
Price et al. 2012). For example, a microarray screen of principal
thalamic nuclei in neonatal mice was able to unravel, for the
first time, genes with a restrictive expression in visual dLGN
and auditory MGN thalamic neurons (Horng et al. 2009).
Although this study provided the evidence for a nuclei-specific
gene expression pattern in the thalamus, the fact that the

analysis was performed postnatally limits the possible implica-
tion of these genes in early development. At the postnatal
stages analysed, TC axons have already targeted and invade
their corresponding cortical target areas and thus, genes
involved in early nuclei specification and/or axon guidance
might already have been downregulated. On the contrary, our
2-stage embryonic analysis of nuclei-specific TC genes might
provide a relevant list of potential candidates genes involved in
early thalamic neuronal specification. Along this line, using in
situ hybridization, the laboratory of Shimogori has provided a
list of several genes potentially involved in the early specifica-
tion of thalamic nuclei (Suzuki-Hirano et al. 2011; Yuge et al.
2011), all stemming from a previous work on transcriptional
profiling of the developing hypothalamus (Shimogori 2010).
Consistently with this, some of the genes we found in our

Figure 7. Misguided dLGN axons in Sema6A mutants concur with changes in nuclei-specific gene expression. (A) Visual dLGN axons are derailed in a Sema6A−/− in

ventral telencephalon at embryonic day E18.5. Placements of small DiI crystals in the dLGN show the normal projection to V1 cortex in control but misguided axons

in Sema6A−/− mutant embryos. (B) The dLGN dissected out from fresh sections for genome-wide analysis of gene expression. (C) Scatter plots of transcripts differen-

tially expressed between control and Sema6A−/− animals. Only transcripts with FC > 1.5 (P < 0.05) are plotted. The blue arrows indicate the probes of the Sema6A tran-

scripts. Venn diagram of overlap between downregulated genes in dLGN and genes enriched in the red E18.5 population (dLGN+VB from Fig. 2). The 14 red-specific

genes that were downregulated in the dLGN of Sema6A−/− are listed to the right. (D) Relative expression levels revealed by normalized intensity [log2] values from the

microarray and in situ hybridization verifying the reduced expression of Hs6st2 and Jam2 in the thalamus of Sema6A−/− embryos. Scale bars represents 250 μm.
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unbiased screen were also described in this study to have a
nuclei-specific pattern of expression, as for example Slitrk6,
Drd2, Kitl (Steel), Cdh6, and Ror α in the population of principal
neurons at E14.5, and Shox2, in the nonprincipal nuclei at E14.5
and at E18.5.

In addition to published studies, the extensive expression
databases such as the Allen Brain Atlases (ABA; http://brain-
map.org; Lein et al. 2007), the GenePaint (Visel et al. 2004), or
the BGEM (Magdaleno et al. 2006) are good tools for looking at
expression patterns of genes within the developing thalamus.
Further, in silico methods using these databases have identify
nuclei-specific genes in the adult thalamus or combinations of
genes expressed in the developing thalamic neurons (Price
et al. 2012; Nagalski et al. 2016). However, although possible for
the adult, these databases fail to provide new genes expressed
a priori in restricted embryonic thalamic nuclei.

Here, we developed a genetic strategy to isolate murine
principal thalamic nuclei genes at distinct embryonic stages
using the Gbx2 promoter. Following a genome-wide analysis,
we identified genes differently expressed between visual dLGN,
somatosensory VB, and auditory MGN nuclei. Furthermore, tak-
ing advantage of the genetic labeling strategy following Gbx2
expression, we could for the first time, lineage trace and
unravel developmentally enriched principal thalamic nuclei
genes as well as determine the gene profile for the 3 principal
sensory-related thalamic nuclei. All cells labeled and analysed
in this study are derived from Gbx2-progeny and thus are thal-
amic neurons (Chen et al. 2009; Li et al. 2012). As some of the
genes with expression restricted to a single nucleus at E18.5
already showed specific patterns of expression at E14.5, it is
tempting to speculate that these genes could be specifying and
further be used as markers of those nuclei, already before they
are anatomically distinguishable and have connected to their
corresponding cortical area. Interestingly, some of the genes
we found enriched in specific populations are expressed in the
thalamus already at E12.5 in a Gbx2-dependent fashion (Mallika
et al. 2015).

In our study we confirmed a number of genes, such as
Hs6st2 and Crabp2, whose expression was previously described
as enriched in the dLGN or MGN, respectively, at neonatal
stages (Horng et al. 2009) and already present at E12.5 (Mallika
et al. 2015). We also found novel genes with an enriched
expression in a specific sensory modality-related thalamic
nucleus. The heparan sulfate 6-O-sulphotransferases Hs6st2
and Hs6st3 were expressed in the dLGN. Interestingly 2 ortho-
logs, Hs2st and Hs6st1, are known to be important for axon
guidance of retinal axons and corpus callosum development
(Pratt et al. 2006; Conway, Howe, et al. 2011), raising the possi-
bility that these molecules could also play a role in the connect-
ivity of dLGN axons to the visual cortex. In addition, Jam2 that
was observed to be enriched in the dLGN and VB (red) popula-
tions at E18.5, has been implicated in tight junctions of endo-
thelial cells (Weber et al. 2007). Whether this gene may also
play a role in neuronal development or specification of axonal
connectivity remains to be elucidated. Remarkably, we found
that Hs6st2 and Jam2 are 2 of the genes significantly reduced in
the misguided dLGN neurons in the Sema6A−/− suggesting that
these genes may play a role in TC connectivity.

Another gene that we found to be specific for the dLGN and
VB (red) populations is cholecystokinin (Cck). This neuropeptide
has been previously described to be expressed in the rodent
thalamus among other brain regions (Schiffmann and
Vanderhaeghen 1991). However, while in the adult Cck is
expressed in many thalamic nuclei, we found it to be specific

for the visual and somatosensory thalamic nuclei at E18.5,
opening the possibility of a function of Cck in the development
and/or cortical targeting of these neurons. Indeed, CCK has the
ability to depolarize the thalamic recipient layer 6 neurons
(Chung et al. 2009) and also has an effect on intrathalamic
oscillations (Cox et al. 1997). We previously demonstrated that
developmental changes in spontaneous activity in thalamic
neurons determine TC axonal extension during development
(Mire et al. 2012). Thus, it is possible that Cck could play a role
in the modulation of this spontaneous activity in the embry-
onic thalamus, and thus, influence TC pathfinding.

Regarding the auditory MGN neurons, we found Crabp2 and
Tshz1 genes to be specifically expressed in this nucleus, extend-
ing previous finding (Horng et al. 2009). The role of either
Crabp2 or Tshz1 in TC development has not been addressed
before. Surprisingly, we found that Ascl1 is enriched in the yel-
low MGN population at E18.5, as well as, in the red population
at E14.5. This is unexpected since this gene is well known to be
expressed in domains of progenitor cells of the diencephalon
that later will form inhibitory neurons (Vue et al. 2007). Ascl1 is
a TF known to be important for TC axon pathfinding to the cor-
tex (Tuttle et al. 1999); however, the TC axon guidance defect
seen in the Ascl1 null mice has so far been attributed to a non-
cell autonomous role of this gene due to early changes in the
patterning of ventral thalamic territories (Tuttle et al. 1999).
Thus, our results open the possibility that Ascl1 also may play a
cell-autonomous role in the specification and/or TC guidance of
auditory thalamic neurons. Finally, our strategy allowed us to
identify a number of genes explicitly common to the principal
sensory thalamic nuclei (red and yellow) populations at E18.5,
exemplified by Lef1, Pou2f2, and Ebf1. Some of these genes
where previously known to be expressed in the thalamus, such
as Lef1 (Jones and Rubenstein 2004), while others like Pou2f2 are
for the first time identified as being unique of principal thal-
amic nuclei. Interestingly, both Ebf1 and Pou2f2 have binding
motifs for Lef1 in their promoter regions raising the possibility
of Lef1 being a key TF for principal thalamic nuclei specification,
as recently also suggested (Nagalski et al. 2016).

Screening the promoter regions of the genes found revealed
additional putative important TFs. We identified Jun specifically
expressed in the dLGN and VB (red) populations at E18.5 and
that regulates several genes specific for these neurons.
Interestingly, Jun is an activity dependent gene, which suggest
that spontaneous embryonic neuronal activity might be an
important feature for setting the transcriptional profile of the
principal thalamic populations. Moreover, our motif analysis
revealed potential novel interactions. For example, in the pro-
moter region of the dLGN-specific gene Sp9 there is a motif for
POU2F2 or the MGN-specific gene Tshz1 there is a motif for
SMAD4. Unfortunately, a limitation in our bioinformatics ana-
lyses is that the database used to screen these motifs did not
contain any consensus binding sequence for Gbx2, and thus,
the genes with binding sites for this TF could not be deter-
mined. In an attempt to find genes regulated by Gbx2, a recent
study performed a microarray analysis in a Gbx2 knockout
E12.5 thalamus and identified several genes with a Gbx2-
dependent expression (Mallika et al. 2015). Interestingly, some
of these genes we found to be persistently expressed in princi-
pal thalamic neurons such as Hs6st2, Slc18a2, and Vegfc. Still, a
possible Gbx2 regulation might be indirect. Furthermore, it
should be taken into consideration that most of the microarray
analysis performed at early embryonic brain stages, as the one
we did here, are based on low input RNA samples. This might
represent a technical limitation as variability is inherited and
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could generate undesired false positive and false negative
results. Future studies should thus be focused in experimen-
tally validating these and others predicted interactions and
thus also determine the role of each TF as activator or repressor
of the respective target gene. More interesting still would be to
determine the interactions and combination of TFs needed to
specify neurons of each thalamic nucleus. Reaching this point
of knowledge would make it possible to reveal how TFs specify
certain features of the thalamic cells and their axonal pathfind-
ing to reach the correct cortical area.

Our study support that thalamic nuclei specification takes
place intrinsically before anatomical boundaries are present in
the thalamus and TC neurons are connected by either afferent
input or to their final target areas. However, a given transcrip-
tional profile could also be influence by a correct axonal target-
ing. We used the Sema6A−/− mouse to address this question.
Indeed, several of the genes identified enriched in the dLGN
and VB populations at E18.5 have a reduced expression level in
the dLGN of Sema6A−/− when compared with controls.
Intriguingly, nearly all specific genes downregulated in the
dLGN of the Sema6A−/− are membrane associated and include
several adhesion molecules, which suggests a bidirectional
interaction between the TC and cortical neurons involved in
setting the final synaptic connectivity of the target cortical
area. One alternative explanation of the altered expression
could be through a cell autonomous effect of the Sema6A pro-
tein, though there is no evidence of such mechanism for this
semaphorin (Suto et al. 2005). However, the importance of a
correct targeting for maintenance of specific TC neuronal con-
nectivity has been recently described (Zembrzycki et al. 2013).
Thus, the transcriptome of a nucleus, though largely set intrin-
sically, is also to some extent affected by the neuron’s
connectivity.

In sum, here we present genes and networks plausibly
important for the specification, development and/or connectiv-
ity of the distinct thalamic neuronal populations. Moreover, the
nuclei-specific novel genes revealed here will help to provide
new tools, like Cre-mice, for in vivo targeting of specific
sensory-related thalamic nuclei. Such mice would be key both
for linage-tracing studies and also in combination with the rap-
idly expanding tool-box of optogenetic (Deisseroth 2015) and
drug-induced genetic manipulations (Roth 2016) that will allow
for functional studies of with high precision.
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